Ляпунова теорема - определение. Что такое Ляпунова теорема
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ляпунова теорема - определение

Центральная предельная теорема Ляпунова; Центральная предельная теорема для мартингалов; Теорема Ляпунова; ЦПТ; Ляпунова теорема
  • «Сглаживание» распределения суммированием. Показана функция плотности вероятности одной случайной величины, а также распределения суммы двух, трёх и четырёх случайных величин с такой же функцией распределения.
  • автор=Rouaud, Mathieu}}</ref>
Найдено результатов: 387
ЛЯПУНОВА ТЕОРЕМА         
одна из предельных теорем теории вероятностей. Устанавливает весьма общие условия сходимости распределения суммы независимых случайных величин к нормальному распределению. Доказана А. М. Ляпуновым (1901).
Ляпунова теорема         

в теории вероятностей, теорема, устанавливающая некоторые весьма общие достаточные условия для сходимости распределения сумм независимых случайных величин к нормальному закону. Сформулирована и доказана А. М. Ляпуновым в 1901. Л. т. завершает исследования П. Л. Чебышева, А. А. Маркова (старшего) и самого А. М. Ляпунова в этом основном для всей теории вероятностей направлении. Точная формулировка Л. т. такова: пусть независимые случайные величины Xi,..., Xn, ... имеют конечные математические ожидания EXk, дисперсии DXk и при δ > 0 абсолютные моменты и пусть - дисперсия суммы Xi,..., Xn. Утверждается, что, если при некотором δ>0

(условие Ляпунова), то вероятность неравенства

стремится при n → ∞ к пределу

равномерно относительно всех значений x1 и x2. Ляпунов дал также оценку скорости сходимости в Л. т. В дальнейшем были установлены условия, расширяющие условие Ляпунова и являющиеся не только достаточными, но в некотором смысле необходимыми. См. Предельные теоремы теории вероятностей.

Лит.: Ляпунов А. М., Новая форма теоремы о пределе вероятности, Собрание сочинений, т. 1, М., 1954, с. 157; Бернштейн С. Н., Теория вероятностей, 4 изд., М. - Л., 1946, с. 275.

А. В. Прохоров.

Центральная предельная теорема         
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Пи-теорема         
Пи-теорема (\Pi-теорема, \pi-теорема) — основополагающая теорема анализа размерностей. Теорема утверждает, что если имеется зависимость между n физическими величинами, не меняющая своего вида при изменении масштабов единиц в некотором классе систем единиц, то она эквивалентна зависимости между, вообще говоря, меньшим числом p=n-k безразмерных величин, где k — наибольшее число величин с независимыми размерностями среди исходных n величин.
Теорема CAP         
Теорема (известная также как теорема Брюера) — эвристическое утверждение о том, что в любой реализации распределённых вычислений возможно обеспечить не более двух из трёх следующих свойств:
Теорема Мёнье         
Теоре́ма (или фо́рмула) Мёнье́ Написание фамилии дано по справочнику: — даёт выражение для кривизны кривой, лежащей на поверхности.
Мёнье теорема         

теорема дифференциальной геометрии (См. Дифференциальная геометрия), устанавливающая свойство кривизн плоских сечений поверхности (см. Кривизна). Пусть π - произвольная плоскость, проведённая через касательную МТ в точке М к поверхности S, θ - её угол с нормалью MN к поверхности, 1/R - кривизна в точке М кривой DMC, по которой поверхность S пересекается плоскостью σ, проходящей через нормаль MN и прямую МТ (DMC - т. н. нормальное сечение поверхности). Тогда кривизна 1/ρ в точке М кривой AMB, по которой поверхность S пересекается плоскостью σ, связана с кривизной 1/R нормального сечения соотношением

Эта формула и выражает теорему Мёнье. М. т. была установлена Ж. Мёнье в 1776, но опубликована лишь в 1785.

Лит.: Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956.

Рис. к ст. Мёнье теорема.

Теорема Дилуорса         
  • Доказательство теоремы Дилуорса через теорему Кёнига — построение двудольного графа из частичного порядка и разбиение на цепочки согласно паросочетаниям
Теорема Дилуорса — комбинаторное утверждение, характеризующее экстремальное свойство для частично упорядоченных множеств: конечное частично упорядоченное множество A может быть разбито на n попарно непересекающихся цепей, где n — количество элементов наибольшей антицепи множества A (называемое также шириной частично упорядоченного множества).
Теорема косинусов         
  • Четырехугольник
  • 300px
ПЛАНИМЕТРИЧЕСКОЕ РАВЕНСТВО
Косинусов теорема; Теорема косинусов для четырёхугольника
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
Теорема Асколи — Арцела         
Теорема Арцела́ — утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство — пространство непрерывных функций на отрезке вещественной прямой. Названа в честь автора, Чезаре Арцела.

Википедия

Центральная предельная теорема

Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применением нормального распределения.

Что такое ЛЯПУНОВА ТЕОРЕМА - определение